NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -429.8 ± 4.1 | kJ/mol | Ccb | Knauth and Sabbah, 1990 | ALS |
ΔfH°gas | -421. ± 3. | kJ/mol | Ccb | Gardner and Hussain, 1972 | ALS |
ΔfH°gas | -435.3 | kJ/mol | N/A | Moureu and Dode, 1937 | Value computed using ΔfHliquid° value of -500.3±1.8 kj/mol from Moureu and Dode, 1937 and ΔvapH° value of 65.0 kj/mol from Gardner and Hussain, 1972.; DRB |
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -501.0 ± 4.1 | kJ/mol | Ccb | Knauth and Sabbah, 1990 | ALS |
ΔfH°liquid | -486. ± 3. | kJ/mol | Ccb | Gardner and Hussain, 1972 | ALS |
ΔfH°liquid | -500.3 ± 1.8 | kJ/mol | Ccb | Moureu and Dode, 1937 | Reanalyzed by Cox and Pilcher, 1970, Original value = -499.2 kJ/mol; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -1822.9 ± 4.1 | kJ/mol | Ccb | Knauth and Sabbah, 1990 | Corresponding ΔfHºliquid = -501.0 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -1838.1 ± 2.3 | kJ/mol | Ccb | Gardner and Hussain, 1972 | Corresponding ΔfHºliquid = -485.76 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -1823.5 ± 1.8 | kJ/mol | Ccb | Moureu and Dode, 1937 | Reanalyzed by Cox and Pilcher, 1970, Original value = -1824. kJ/mol; Corresponding ΔfHºliquid = -500.32 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
189.9 | 298. | Zaripov, 1982 | T = 298, 323, 363 K.; DH |
177.0 | 303. | Kawaizumi, Otake, et al., 1972 | DH |
180.3 | 276.7 | Parks and Huffman, 1927 | T = 91 to 277 K. Value is unsmoothed experimental datum.; DH |
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 460. ± 2. | K | AVG | N/A | Average of 14 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 67. ± 8. | kJ/mol | AVG | N/A | Average of 9 values; Individual data points |
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
66.5 | 413. | TGA | Al-Najjar and Al-Sammerrai, 2007 | Based on data from 373. to 408. K.; AC |
60.0 ± 0.3 | 380. | EB | Steele, Chirico, et al., 2002 | Based on data from 365. to 496. K.; AC |
56.2 ± 0.2 | 420. | EB | Steele, Chirico, et al., 2002 | Based on data from 365. to 496. K.; AC |
52.0 ± 0.3 | 460. | EB | Steele, Chirico, et al., 2002 | Based on data from 365. to 496. K.; AC |
47.5 ± 0.6 | 500. | EB | Steele, Chirico, et al., 2002 | Based on data from 365. to 496. K.; AC |
58.6 | 333. | A | Stephenson and Malanowski, 1987 | Based on data from 318. to 461. K. See also Stull, 1947.; AC |
64. ± 2. | 353. | V | Gardner and Hussain, 1972 | ALS |
58.2 | 378. | N/A | Schierholtz and Staples, 1935 | Based on data from 353. to 403. K.; AC |
56. | 431. | N/A | Schierholtz and Staples, 1935 | Based on data from 403. to 460. K.; AC |
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
318.7 to 461.4 | 6.07936 | 2692.187 | -17.94 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -3. | kJ/mol | Eqk | Anteunis and Rommelaere, 1970 | liquid phase |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -6.93 | kJ/mol | Kin | Zhang and Luo, 1991 | liquid phase |
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH5O + | 10.04 ± 0.05 | CH3CO | EI | Holmes and Lossing, 1984 | LBLHLM |
C2H5O + | 10.16 ± 0.05 | CH2OH | EI | Holmes and Lossing, 1984 | LBLHLM |
C2H5O + | 10.25 | CH2OH | EI | Lossing, 1977 | LLK |
Data compiled by: Coblentz Society, Inc.
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
The interactive spectrum display requires a browser with JavaScript and HTML 5 canvas support.
Select a region with data to zoom. Select a region with no data or click the mouse on the plot to revert to the orginal display.
The following components were used in generating the plot:
Additonal code used was developed at NIST: jcamp-dx.js and jcamp-plot.js.
Use or mention of technologies or programs in this web site is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that these items are necessarily the best available for the purpose.
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1998. |
NIST MS number | 291457 |
All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Knauth and Sabbah, 1990
Knauth, P.; Sabbah, R., Energetics of inter- and intramolecular bonds in alkanediols. IV. The thermochemical study of 1,2-alkanediols at 298.15 K, Thermochim. Acta, 1990, 164, 145-152. [all data]
Gardner and Hussain, 1972
Gardner, P.J.; Hussain, K.S., The standard enthalpies of formation of some aliphatic diols, J. Chem. Thermodyn., 1972, 4, 819-827. [all data]
Moureu and Dode, 1937
Moureu, H.; Dode, M., Chaleurs de formation de l'oxyde d'ethylene, de l'ethanediol et de quelques homologues, Bull. Soc. Chim. France, 1937, 4, 637-647. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Zaripov, 1982
Zaripov, Z.I., Experimental study of the isobaric heat capacity of liquid organic compounds with molecular weights of up to 4000 a.e.m., 1982, Teplomassoobmen Teplofiz. [all data]
Kawaizumi, Otake, et al., 1972
Kawaizumi, F.; Otake, T.; Nomura, H.; Miyahara, Y., Heat capacities of aqueous solutions of ethylene glycol, propylene glycol and 1,3-butanediol, Nippon Kagaku. Kaishi, 1972, 1972, 1733-1776. [all data]
Parks and Huffman, 1927
Parks, G.S.; Huffman, H.M., Studies on glass. I. The transition between the glassy and liquid states in the case of some simple organic compounds, J. Phys. Chem., 1927, 31, 1842-1855. [all data]
Al-Najjar and Al-Sammerrai, 2007
Al-Najjar, Hazim; Al-Sammerrai, Dhoaib, Thermogravimetric determination of the heat of vaporization of some highly polar solvents, J. Chem. Technol. Biotechnol., 2007, 37, 3, 145-152, https://doi.org/10.1002/jctb.280370302 . [all data]
Steele, Chirico, et al., 2002
Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A., Measurements of Vapor Pressure, Heat Capacity, and Density along the Saturation Line for γ-Caprolactam, Pyrazine, 1,2-Propanediol, Triethylene Glycol, Phenyl Acetylene, and Diphenyl Acetylene, J. Chem. Eng. Data, 2002, 47, 4, 689-699, https://doi.org/10.1021/je010085z . [all data]
Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]
Schierholtz and Staples, 1935
Schierholtz, O.J.; Staples, M.L., Vapor Pressures of Certain Glycols, J. Am. Chem. Soc., 1935, 57, 12, 2709-2711, https://doi.org/10.1021/ja01315a106 . [all data]
Anteunis and Rommelaere, 1970
Anteunis, M.; Rommelaere, Y., NMR experiments on acetals. XXIX. The ease of acetonide formation of some glycols, Bull. Soc. Chim. Belg., 1970, 79, 523-530. [all data]
Zhang and Luo, 1991
Zhang, S.; Luo, Y., Kinetics and technological conditions for the synthesis of dimethyl carbonate, Chem. React. Eng. Tech., 1991, 7, 10-19. [all data]
Holmes and Lossing, 1984
Holmes, J.L.; Lossing, F.P., Heats of formation of organic radicals from appearance energies, Int. J. Mass Spectrom. Ion Processes, 1984, 58, 113. [all data]
Lossing, 1977
Lossing, F.P., Heats of formation of some isomeric [CnH2n+1] + ions. Substitutional effects on ion stability, J. Am. Chem. Soc., 1977, 99, 7526. [all data]
AE | Appearance energy |
Cp,liquid | Constant pressure heat capacity of liquid |
Tboil | Boiling point |
ΔcH°liquid | Enthalpy of combustion of liquid at standard conditions |
ΔfH°gas | Enthalpy of formation of gas at standard conditions |
ΔfH°liquid | Enthalpy of formation of liquid at standard conditions |
ΔrH° | Enthalpy of reaction at standard conditions |
ΔvapH | Enthalpy of vaporization |
ΔvapH° | Enthalpy of vaporization at standard conditions |
© 2023 by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.
Copyright for NIST Standard Reference Data is governed by the Standard Reference Data Act.